EAO Library

Login now to access Regular content available to all registered users.
Abstract
Discussion Forum (0)

Background:
The socket preservation is a procedure in which graft material are placed in the socket of an extracted tooth at the time of extraction, and it should be sealed with a membrane (resorbable or not) or with epithelial connective tissue . However, there is controversy about the need to use epithelial connective tissue graft instead of collagen membranes and efficacy of socket preservation with covering graft material due to the higher morbidity. Nevertheless, there is also generally a lack of clinical evidence about the best extraction socket sealing procedure in the literature.

Aim/Hypothesis:
to compare epithelial connective tissue graft vs porcine collagen matrix for sealing post-extraction sockets grafted with deproteinised bovine bone.

Material and Methods:
a total of 30 patients, who needed a maxillary tooth to be extracted between their premolars and required a delayed, fixed, single implant-supported restoration, had their teeth atraumatically extracted and their sockets grafted with deproteinised bovine bone. Patients were randomised according to a parallel group design into two arms: socket sealing with epithelial connective tissue graft (group A) vs porcine collagen matrix (group B). Outcome measures were: implant success and survival rate, complications, horizontal and vertical alveolar bone dimensional changes measured on Cone Beam computed tomography (CBCT) scans at three levels localised 1, 3, and 5 mm below the most coronal aspect of the bone crest (levels A, B, and C); and between the palatal and buccal wall peaks (level D); and peri-implant marginal bone level changes measured on periapical radiographs. All data analysis was carried out according to a pre-established analysis plan. All statistical comparisons were conducted at the 0.05 level of significance.

Results:
15 patients were randomised to group A and 15 to group B. No patients dropped out. No failed implants or complications were reported 1 year after implant placement. Five months after tooth extraction there were no statistically significant differences between the 2 groups for both horizontal and vertical alveolar bone dimensional changes. At level A the difference was 0.13 ± 0.18; 95% CI 0.04 to 0.26 mm (P = 0.34), at level B it was 0.08 ± 0.23; 95% CI -0.14 to 0.14 (P = 0.61), at level C it was 0.05 ± 0.25; 95% CI -0.01 to 0.31 mm (P = 0.55) and at level D it was 0.13 ± 0.27; 95% CI -0.02 to 0.32 mm (P = 0.67). One year after implant placement there were no statistically significant differences between the 2 groups for peri-implant marginal bone level changes (difference: 0.07 ± 0.11 mm; 95% CI -0.02 to 0.16; P = 0.41).

Conclusions and clinical implications:
when teeth extractions were performed atraumatically and sockets were filled with deproteinised bovine bone, sealing the socket with a porcine collagen matrix or a epithelial connective tissue graft showed similar outcomes. The use of porcine collagen matrix allowed simplification of treatment because no palatal donor site was involved.

Background:
The socket preservation is a procedure in which graft material are placed in the socket of an extracted tooth at the time of extraction, and it should be sealed with a membrane (resorbable or not) or with epithelial connective tissue . However, there is controversy about the need to use epithelial connective tissue graft instead of collagen membranes and efficacy of socket preservation with covering graft material due to the higher morbidity. Nevertheless, there is also generally a lack of clinical evidence about the best extraction socket sealing procedure in the literature.

Aim/Hypothesis:
to compare epithelial connective tissue graft vs porcine collagen matrix for sealing post-extraction sockets grafted with deproteinised bovine bone.

Material and Methods:
a total of 30 patients, who needed a maxillary tooth to be extracted between their premolars and required a delayed, fixed, single implant-supported restoration, had their teeth atraumatically extracted and their sockets grafted with deproteinised bovine bone. Patients were randomised according to a parallel group design into two arms: socket sealing with epithelial connective tissue graft (group A) vs porcine collagen matrix (group B). Outcome measures were: implant success and survival rate, complications, horizontal and vertical alveolar bone dimensional changes measured on Cone Beam computed tomography (CBCT) scans at three levels localised 1, 3, and 5 mm below the most coronal aspect of the bone crest (levels A, B, and C); and between the palatal and buccal wall peaks (level D); and peri-implant marginal bone level changes measured on periapical radiographs. All data analysis was carried out according to a pre-established analysis plan. All statistical comparisons were conducted at the 0.05 level of significance.

Results:
15 patients were randomised to group A and 15 to group B. No patients dropped out. No failed implants or complications were reported 1 year after implant placement. Five months after tooth extraction there were no statistically significant differences between the 2 groups for both horizontal and vertical alveolar bone dimensional changes. At level A the difference was 0.13 ± 0.18; 95% CI 0.04 to 0.26 mm (P = 0.34), at level B it was 0.08 ± 0.23; 95% CI -0.14 to 0.14 (P = 0.61), at level C it was 0.05 ± 0.25; 95% CI -0.01 to 0.31 mm (P = 0.55) and at level D it was 0.13 ± 0.27; 95% CI -0.02 to 0.32 mm (P = 0.67). One year after implant placement there were no statistically significant differences between the 2 groups for peri-implant marginal bone level changes (difference: 0.07 ± 0.11 mm; 95% CI -0.02 to 0.16; P = 0.41).

Conclusions and clinical implications:
when teeth extractions were performed atraumatically and sockets were filled with deproteinised bovine bone, sealing the socket with a porcine collagen matrix or a epithelial connective tissue graft showed similar outcomes. The use of porcine collagen matrix allowed simplification of treatment because no palatal donor site was involved.

Clinical and radiological evaluation of Post-extraction sockets preservation. Epithelial connective tissue graft versus porcine collagen matrix: 1-year results of a RCT.
Silvio Meloni
Silvio Meloni
EAO Library. Meloni S. 09/26/2015; 149413; 621
user
Silvio Meloni
Abstract
Discussion Forum (0)

Background:
The socket preservation is a procedure in which graft material are placed in the socket of an extracted tooth at the time of extraction, and it should be sealed with a membrane (resorbable or not) or with epithelial connective tissue . However, there is controversy about the need to use epithelial connective tissue graft instead of collagen membranes and efficacy of socket preservation with covering graft material due to the higher morbidity. Nevertheless, there is also generally a lack of clinical evidence about the best extraction socket sealing procedure in the literature.

Aim/Hypothesis:
to compare epithelial connective tissue graft vs porcine collagen matrix for sealing post-extraction sockets grafted with deproteinised bovine bone.

Material and Methods:
a total of 30 patients, who needed a maxillary tooth to be extracted between their premolars and required a delayed, fixed, single implant-supported restoration, had their teeth atraumatically extracted and their sockets grafted with deproteinised bovine bone. Patients were randomised according to a parallel group design into two arms: socket sealing with epithelial connective tissue graft (group A) vs porcine collagen matrix (group B). Outcome measures were: implant success and survival rate, complications, horizontal and vertical alveolar bone dimensional changes measured on Cone Beam computed tomography (CBCT) scans at three levels localised 1, 3, and 5 mm below the most coronal aspect of the bone crest (levels A, B, and C); and between the palatal and buccal wall peaks (level D); and peri-implant marginal bone level changes measured on periapical radiographs. All data analysis was carried out according to a pre-established analysis plan. All statistical comparisons were conducted at the 0.05 level of significance.

Results:
15 patients were randomised to group A and 15 to group B. No patients dropped out. No failed implants or complications were reported 1 year after implant placement. Five months after tooth extraction there were no statistically significant differences between the 2 groups for both horizontal and vertical alveolar bone dimensional changes. At level A the difference was 0.13 ± 0.18; 95% CI 0.04 to 0.26 mm (P = 0.34), at level B it was 0.08 ± 0.23; 95% CI -0.14 to 0.14 (P = 0.61), at level C it was 0.05 ± 0.25; 95% CI -0.01 to 0.31 mm (P = 0.55) and at level D it was 0.13 ± 0.27; 95% CI -0.02 to 0.32 mm (P = 0.67). One year after implant placement there were no statistically significant differences between the 2 groups for peri-implant marginal bone level changes (difference: 0.07 ± 0.11 mm; 95% CI -0.02 to 0.16; P = 0.41).

Conclusions and clinical implications:
when teeth extractions were performed atraumatically and sockets were filled with deproteinised bovine bone, sealing the socket with a porcine collagen matrix or a epithelial connective tissue graft showed similar outcomes. The use of porcine collagen matrix allowed simplification of treatment because no palatal donor site was involved.

Background:
The socket preservation is a procedure in which graft material are placed in the socket of an extracted tooth at the time of extraction, and it should be sealed with a membrane (resorbable or not) or with epithelial connective tissue . However, there is controversy about the need to use epithelial connective tissue graft instead of collagen membranes and efficacy of socket preservation with covering graft material due to the higher morbidity. Nevertheless, there is also generally a lack of clinical evidence about the best extraction socket sealing procedure in the literature.

Aim/Hypothesis:
to compare epithelial connective tissue graft vs porcine collagen matrix for sealing post-extraction sockets grafted with deproteinised bovine bone.

Material and Methods:
a total of 30 patients, who needed a maxillary tooth to be extracted between their premolars and required a delayed, fixed, single implant-supported restoration, had their teeth atraumatically extracted and their sockets grafted with deproteinised bovine bone. Patients were randomised according to a parallel group design into two arms: socket sealing with epithelial connective tissue graft (group A) vs porcine collagen matrix (group B). Outcome measures were: implant success and survival rate, complications, horizontal and vertical alveolar bone dimensional changes measured on Cone Beam computed tomography (CBCT) scans at three levels localised 1, 3, and 5 mm below the most coronal aspect of the bone crest (levels A, B, and C); and between the palatal and buccal wall peaks (level D); and peri-implant marginal bone level changes measured on periapical radiographs. All data analysis was carried out according to a pre-established analysis plan. All statistical comparisons were conducted at the 0.05 level of significance.

Results:
15 patients were randomised to group A and 15 to group B. No patients dropped out. No failed implants or complications were reported 1 year after implant placement. Five months after tooth extraction there were no statistically significant differences between the 2 groups for both horizontal and vertical alveolar bone dimensional changes. At level A the difference was 0.13 ± 0.18; 95% CI 0.04 to 0.26 mm (P = 0.34), at level B it was 0.08 ± 0.23; 95% CI -0.14 to 0.14 (P = 0.61), at level C it was 0.05 ± 0.25; 95% CI -0.01 to 0.31 mm (P = 0.55) and at level D it was 0.13 ± 0.27; 95% CI -0.02 to 0.32 mm (P = 0.67). One year after implant placement there were no statistically significant differences between the 2 groups for peri-implant marginal bone level changes (difference: 0.07 ± 0.11 mm; 95% CI -0.02 to 0.16; P = 0.41).

Conclusions and clinical implications:
when teeth extractions were performed atraumatically and sockets were filled with deproteinised bovine bone, sealing the socket with a porcine collagen matrix or a epithelial connective tissue graft showed similar outcomes. The use of porcine collagen matrix allowed simplification of treatment because no palatal donor site was involved.

By clicking “Accept Terms & all Cookies” or by continuing to browse, you agree to the storing of third-party cookies on your device to enhance your user experience and agree to the user terms and conditions of this learning management system (LMS).

Cookie Settings
Accept Terms & all Cookies